Classes of Operators with Fixed Points on Hilbert Spaces GILBERT CROMBEZ¹ <gilbert.crombez@ugent.be>

Let H be a real Hilbert space with inner product \langle , \rangle , and consider the class \mathcal{I} of operators $T: H \to H$ such that each T has a nonempty set FixT of fixed points, and such that $\langle x - Tx, z - Tx, z - Tx \rangle \leq 0$, for each x in H and for each z in FixT (see [1]). We first present a parallel algorithm to find, in a finite number of steps, a common fixed point of a finite number of operators from this class when it is known that the intersection of their fixed point sets contains an interior point. Next, we remark that the class \mathcal{I} can be imbedded in a hierarchical system of classes of operators depending on a nonnegative real parameter ν ; the classes in this system are denoted by $\text{QNE}(\nu, H)$ (shorthand for ν -quasi-nonexpansive on H). When μ and ν are nonnegative real numbers and $\mu > \nu$, then $\text{QNE}(\mu, H)$ is included in QNE (ν, H) . We comment on the possibility of extending results that formerly have been proved for operators belonging to the class QNE(1, H), to the class $\text{QNE}(\nu, H)$ with $0 \leq \nu < 1$.

L

¹Ghent University