Linear Complexity and Related Quality Measures for Cryptographic Sequences

 $A{\tt RNE} ~ W{\tt INTERHOF}^1 < {\tt arne.winterhof@oeaw.ac.at} >$

Let (s_n) be a sequence over the finite field F_p of prime order p. The *linear complexity* $L(s_n)$ of (s_n) over F_p is the length L of the shortest linear recurrence relation over F_p

 $s_{n+L} = c_{L-1}s_{n+L-1} + \ldots + c_0s_n, \quad n \ge 0,$

satisfied by (s_n) . The linear complexity is a valuable measure for unpredictability and thus suitability for cryptography. It can be determined with the well known Berlekamp-Massey algorithm which is efficient for sequences with low linear complexity.

We discuss linear complexity and related measures as the k-error linear complexity, linear complexity over different moduli and the correlation measure. The connections between these quality measures are illustrated by results on the Legendre sequence (l_n) defined by

$$U_n = \begin{cases} \left(1 - \left(\frac{n}{p}\right)\right)/2 & \text{if } n \not\equiv 0 \mod p, \\ 0 & \text{otherwise,} \end{cases} \quad n \ge 0,$$

where $\left(\frac{n}{p}\right)$ denotes the Legendre symbol.

[1] H. Aly, A. Winterhof: On the k-error linear complexity of Legendre and Sidelnikov sequences, Preprint 2005.

[2] I. Shparlinski, A. Winterhof: On the linear complexity of bounded integer sequences over different moduli, Information Processing Letters, to appear.

L

¹RICAM Austrian Academy of Sciences