The distribution of patterns in random trees

Gerard Kok ${ }^{11}$ kok@dmg.tuwien.ac.at
Let \mathcal{T}_{n} denote the set of unrooted unlabeled trees of size n and let \mathcal{M} be a particular (finite) tree. Assuming that every tree of \mathcal{T}_{n} is equally likely, it is shown that the number of occurrences X_{n} of \mathcal{M} as an induced sub-tree satisfies $\mathbf{E} X_{n} \sim \mu n$ and \mathbf{V} ar $X_{n} \sim \sigma^{2} n$ for some (computable) constants $\mu>0$ and $\sigma \geq 0$. Furthermore, if $\sigma>0$ then $\left(X_{n}-\mathbf{E} X_{n}\right) / \sqrt{\mathrm{Var} X_{n}}$ converges to a limiting distribution with density $\left(A+B t^{2}\right) e^{-C t^{2}}$ for some constants A, B, C. However, in all cases in which we were able to calculate these constants, we obtained $B=0$ and thus a normal distribution. Further, if we consider planted or rooted trees instead of \mathcal{T}_{n} then the limiting distribution is always normal. Similar results can be proved for planar, labeled and simply generated trees.
[1] G.J.P. Kok: The distribution of patterns in random trees, Diplomarbeit TU Wien, 2005
[2] B. Gittenberger, M. Drmota: The distribution of nodes of given degree in random trees, J. Graph Theory, 31(3):227-253, 1999.
[3] F. Chyzak, M. Drmota,T. Klausner and G. Kok: The distribution of patterns in random trees, manuscript

L

