٦

The distribution of patterns in random trees

 $Gerard ~Kok^1 < \texttt{kok@dmg.tuwien.ac.at} >$

Let \mathcal{T}_n denote the set of unrooted unlabeled trees of size n and let \mathcal{M} be a particular (finite) tree. Assuming that every tree of \mathcal{T}_n is equally likely, it is shown that the number of occurrences X_n of \mathcal{M} as an induced sub-tree satisfies $\mathbf{E}X_n \sim \mu n$ and $\mathbf{Var} X_n \sim \sigma^2 n$ for some (computable) constants $\mu > 0$ and $\sigma \ge 0$. Furthermore, if $\sigma > 0$ then $(X_n - \mathbf{E}X_n)/\sqrt{\mathbf{Var} X_n}$ converges to a limiting distribution with density $(A + Bt^2)e^{-Ct^2}$ for some constants A, B, C. However, in all cases in which we were able to calculate these constants, we obtained B = 0 and thus a normal distribution. Further, if we consider planted or rooted trees instead of \mathcal{T}_n then the limiting distribution is always normal. Similar results can be proved for planar, labeled and simply generated trees.

[1] G.J.P. Kok: The distribution of patterns in random trees, Diplomarbeit TU Wien, 2005

[2] B. Gittenberger, M. Drmota: *The distribution of nodes of given degree in random trees*, J. Graph Theory, 31(3):227-253, 1999.

[3] F. Chyzak, M. Drmota, T. Klausner and G. Kok: *The distribution of patterns in random trees*, manuscript

L

¹TU Delft