Waring's Problem with digital restrictions

OLIVER PFEIFFER ${ }^{11}$ oliver.pfeiffer@unileoben.ac.at Jörg M. Thuswaldner ${ }^{2}<$ joerg.thuswaldner@unileoben.ac.at>
Waring's Problem, conjecturing that every integer N can be represented as sum $N=n_{1}^{d}+\ldots+n_{s}^{d}$ of a sufficiently large number of powers of other integers, is investigated subject to so-called digital restrictions. That is, the indeterminates n_{1}, \ldots, n_{s} simultaneously obey a condition involving the q adic sum of digits function S_{q}. Given N, s, d and q, we provide a Hardy-Littlewood like asymptotic formula for the number of such representations of N, from which the fact that the corresponding set of integers forms an asymptotic basis can be easily derived.
[1] P. Kirschenhofer, O. Pfeiffer and J. M. Thuswaldner: On Waring's and Tarry's problem with digital restrictions, Proc. of the ELAZ conference (to appear)
[2] O. Pfeiffer and J. M. Thuswaldner: Waring's Problem restricted by a system of sum of digits congruences, Funct. Approx. Comment. Math. (to appear)
[3] J. M. Thuswaldner and R. F. Tichy: Waring's problem with digital restrictions, Israel J. Math. (to appear)

L

[^0]
[^0]: ${ }^{1}$ früher: Montanuniversität Leoben
 ${ }^{2}$ Montanuniversität Leoben

