An intertwined system of recurrences related to the golden mean

Thomas Stoll ${ }^{11}$ stoll@dmg.tuwien.ac.at
In his well-known book "Gödel, Escher, Bach: An Eternal Golden Braid", D. R. Hofstadter introduces a "married couple" of integer functions $M(n), F(n)$ defined by $M(0)=0, F(0)=1$ and

$$
\begin{aligned}
M(n) & =n-F(M(n-1)) \\
F(n) & =n-M(F(n-1)) \quad \text { for } n>0 .
\end{aligned}
$$

We first show that $F(n)=\lfloor(n+1) \mu\rfloor+\varepsilon_{1}$ and $M(n)=\lfloor(n+1) \mu\rfloor-\varepsilon_{2}$ with $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$ and $\mu=\phi^{-1}$, where $\phi=(\sqrt{5}+1) / 2$ is the golden mean. In generalizing this result, we consider the intertwined system of $N \geq 3$ recurrences

$$
\begin{aligned}
a_{1}(n) & =n-a_{N}\left(a_{1}(n-1)\right) \\
a_{2}(n) & =n-a_{1}\left(a_{2}(n-1)\right) \\
\vdots & \\
a_{k}(n) & =n-a_{k-1}\left(a_{k}(n-1)\right) \\
\vdots & \\
a_{N}(n) & =n-a_{N-1}\left(a_{N}(n-1)\right)
\end{aligned}
$$

with $a_{k}(0)=0$ for $1 \leq k \leq N, k \neq K$ and $a_{K}(0)=1$ for some $2 \leq K \leq N$. Again, we obtain some explicit formulæ for $a_{j}(n)$ which involve both the golden ratio and Fibonacci numbers. In contrast to the original case, irregular oscillations occur.

L

