An intertwined system of recurrences related to the golden mean THOMAS STOLL¹ <stoll@dmg.tuwien.ac.at>

In his well-known book "Gödel, Escher, Bach: An Eternal Golden Braid", D. R. Hofstadter introduces a "married couple" of integer functions M(n), F(n) defined by M(0) = 0, F(0) = 1and

$$M(n) = n - F(M(n-1))$$

 $F(n) = n - M(F(n-1))$ for $n > 0$.

We first show that $F(n) = \lfloor (n+1)\mu \rfloor + \varepsilon_1$ and $M(n) = \lfloor (n+1)\mu \rfloor - \varepsilon_2$ with $\varepsilon_1, \varepsilon_2 \in \{0, 1\}$ and $\mu = \phi^{-1}$, where $\phi = (\sqrt{5} + 1)/2$ is the golden mean. In generalizing this result, we consider the intertwined system of $N \ge 3$ recurrences

$$a_{1}(n) = n - a_{N}(a_{1}(n-1))$$

$$a_{2}(n) = n - a_{1}(a_{2}(n-1))$$

$$\vdots$$

$$a_{k}(n) = n - a_{k-1}(a_{k}(n-1))$$

$$\vdots$$

$$a_{N}(n) = n - a_{N-1}(a_{N}(n-1))$$

with $a_k(0) = 0$ for $1 \le k \le N$, $k \ne K$ and $a_K(0) = 1$ for some $2 \le K \le N$. Again, we obtain some explicit formulæ for $a_j(n)$ which involve both the golden ratio and Fibonacci numbers. In contrast to the original case, irregular oscillations occur.

L

¹TU Wien