On a parameterized family of relative Thue equations

CATRIN LAMPL ${ }^{1}$ catrin.lampl@unileoben.ac.at

Let $k:=\mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic number field and \mathbb{Z}_{k} be the corresponding ring of integers. We consider the family of relative Thue equations

$$
\begin{equation*}
F_{t}(x, y)=x^{3}-(t-1) x^{2} y-(t+2) x y^{2}-y^{3}=\ell \tag{1}
\end{equation*}
$$

with $t, \ell \in \mathbb{Z}_{k}, t \notin \mathbb{Z}$ and $|\ell| \leq|2 t+1|$. Let $k(\alpha)$ be the cubic extension of k generated by a root α of the polynomial $f_{t}(x)=F_{t}(x, 1)$ and let $\mathbb{Z}_{k(\alpha)}$ be its ring of integers. Let (x, y) with $x, y \in \mathbb{Z}_{k}$ be a solution of (1). We determine all elements $\gamma=x-\alpha y \in \mathbb{Z}_{k(\alpha)}$ whose norms satisfy $\left|N_{k(\alpha) / k}(\gamma)\right| \leq|2 t+1|$ and solve the Thue equations for all $t \in \mathbb{Z}_{k}, t \notin \mathbb{Z}$ with $\Re t=-\frac{1}{2}$ and all $|\ell| \leq|2 t+1|$. Supported by the Austrian Science Foundation (FWF) Project Nr. S8310.

L

${ }^{1}$ Montanuniversität Leoben

