Computational Micromagnetism for Large-Soft Magnets

 $D{\rm IRK}\ P{\rm RAETORIUS}^1 < {\tt dirk.praetorius@tuwien.ac.at} >$

The large body limit in the Landau-Lifshitz equations of micromagnetics yields a macroscopic model without exchange energy and convexified side conditions for the macroscopic magnetisation vectors. Its Euler Lagrange equations (**P**) read: Given a magnetic body $\Omega \subseteq \mathbb{R}^d$, d = 2, 3, an exterior field $\mathbf{f} \in L^2(\Omega)^d$ and the convexified anisotropy density $\phi^{**} : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$, find a magnetization $bfm \in L^2(\Omega)^d$ and a Lagrange multiplier $\lambda \in L^2(\Omega)$ such that a.e. in Ω

$$\nabla u + D\phi^{**}(\mathbf{m}) + \lambda \mathbf{m} = \mathbf{f},$$

$$|\mathbf{m}| \le 1, \quad \lambda \ge 0,$$

$$\lambda(1 - |\mathbf{m}|) = 0.$$

The potential $u \in H^1_{loc}(\mathbb{R}^d)$ solves the (Maxwell) equations

$$\nabla u \in L^2(\mathbb{R}^d)^d$$
 and div $(-\nabla u + \mathbf{m}) = 0$ in $\mathcal{D}'(\mathbb{R}^d)$

in the entire space. It therefore appears natural to recast the associated far field energy into an integral operator \mathcal{P} which maps **m** to the corresponding stray field $\nabla u = \mathcal{P}\mathbf{m}$.

The proposed numerical scheme involves the operator \mathcal{P} and replaces pointwise side-condition $|\mathbf{m}| \leq 1$ by a penalization strategy. Given a triangulation \mathcal{T} , the induced space of piecewise constant functions $P_0(\mathcal{T})$ on Ω , and a penalization parameter $\varepsilon > 0$, the discrete penalized problem $(P_{\varepsilon,h})$ reads: Find $\mathbf{m}_h \in P_0(\mathcal{T})^d$ such that for all $\boldsymbol{\nu}_h \in P_0(\mathcal{T})^d$

$$\langle \mathcal{P}\mathbf{m}_h + D\phi^{**}(\mathbf{m}_h) + \lambda_h \mathbf{m}_h; \boldsymbol{\nu}_h \rangle_{L^2(\Omega)} = \langle \mathbf{f}; \boldsymbol{\nu}_h \rangle_{L^2(\Omega)}$$

with $\lambda_h := \varepsilon^{-1} \frac{\max\{0, |\mathbf{m}_h| - 1\}}{|\mathbf{m}_h|} \in P_0(\mathcal{T}).$

Numerical aspects addressed in the presentation include the efficient treatment of \mathcal{P} via hierarchical matrices as well as a priori and a posteriori error control and adaptive mesh-design.

The talk is based on joint work with Carsten Carstensen (Humboldt-Universität Berlin) and Nikola Popović (University of Boston).

L

┛

¹TU Wien, Institut f. Analysis und Scientific Computing