Maximum independent vertex sets in hamiltonian 4-regular graphs

Herbert Fleischner ${ }^{1}$ <fleisch@dbai.tuwien.ac.at, herbtravel@yahoo.com>
As had been conjectured by P. Erdös and was proved by M. Stiebitz and the speaker, cycle-plus-triangles graphs are 3 -colourable (they are even 3 -choosable). However, if one considers a hamiltonian 4-regular graph G decomposable into a hamiltonian cycle H and conformly inscribed cycles (that is, a run through a component of $G-H$ corresponds to a subsequence of $V(H)$ if one traverses H in a fixed direction), then 3-colourability is an NP-complete problem, and the same conclusion holds if one just asks for an independent set of order $n / 3$ where n is the order of G. On the other hand, one can easily prove that the independence number $\alpha(G)$ is at least $(n-r) / 3$ where r is the number of components in $G-H$.
Considering from among the above graphs only those that have no independent set of size at least $n / 3$, one can write for these graphs

$$
\begin{equation*}
\alpha(G)=(n-c r) / 3 \tag{1}
\end{equation*}
$$

where n and r are as above, and c lies in the interval $(0,1]$. It turns out that for every rational c in this interval there exist $n=n(c)$ and $r=r(c)$ and a 4-regular graph G of order n decomposable into a hamiltonian cycle H and r conformly inscribed cycles such that G satisfies Equation 1 .

L

[^0]
[^0]: ${ }^{1}$ TU Wien, Institut fuer Informationssysteme

