Shift Radix Systems and Variations of Them

PaUl SURER ${ }^{1}$ paul.surer@reflex.at

For $\mathbf{r} \in \mathbb{R}^{\mathbf{d}}$ define the mapping $\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\lfloor\mathbf{r} \cdot \mathbf{x}\rfloor\right) . \tau_{\mathbf{r}}$ is called a shift radix system (SRS) if $\forall \mathbf{x} \in \mathbb{Z}^{d}: \exists n \in \mathbb{N}$ with $\tau_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}$. Shift radix systems are strongly related to well known notions of number systems. Let $\mathcal{D}_{d}^{0}:=\left\{r \in \mathbb{R}^{d} \mid \tau_{\mathbf{r}}\right.$ is SRS $\}$. We will present results concerning the characterisation of \mathcal{D}_{2}^{0}. Furthermore we will consider the following variant of SRS: Let $\tilde{\tau}_{\mathbf{r}}(\mathbf{x})=\left(x_{2}, \ldots, x_{d},-\left\lfloor\mathbf{r} \cdot \mathbf{x}+\frac{1}{2}\right\rfloor\right)$. The mapping $\tilde{\tau}_{\mathbf{r}}$ is called a symmetric shift radix system (SSRS), if $\forall \mathbf{x} \in \mathbb{Z}^{d}: \exists n \in \mathbb{N}$ with $\tilde{\tau}_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}$. The set of SSRS parameters is defined by $\tilde{\mathcal{D}}_{d}^{0}:=\left\{r \in \mathbb{R}^{d} \mid \tau_{\mathbf{r}}\right.$ is SSRS $\}$. This set can be completely characterised for $d=2$. For $d=3$ we will discuss some new characterization results. Supported by FWF Project Nr. P17557-N12.

L

${ }^{1}$ Montanuniversität Leoben

