Γ

On norm form equations with solutions forming arithmetic progressions

Attila Pethö ${ }^{1}$ pethoe@inf.unideb.hu
AtTILA BÉRCZES ${ }^{2}$ berczesa@math.klte.hu
VOLKER ZIEGLER ${ }^{3}<$ ziegler@finanz.math.tugraz.at $>$

Let $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m}$ be linearly independent algebraic numbers over \mathbb{Q} and put $K:=\mathbb{Q}\left(\alpha_{1}\right.$, $\left.\ldots, \alpha_{m}\right)$. Let $n:=[K: \mathbb{Q}]$. For any $\alpha \in K$, denote by $\alpha^{(i)}$ the conjugates of α. Put $l^{(i)}(\mathbf{X})=$ $X_{1}+\alpha_{2}^{(i)} X_{2}+\cdots+\alpha_{n}^{(i)} X_{n}$ for $i=1, \ldots, n$. There exists a non-zero $a_{0} \in \mathbb{Z}$ such that the form $F(\mathbf{X}):=a_{0} N_{K / \mathbb{Q}}\left(\alpha_{1} X_{1}+\cdots+\alpha_{m} X_{m}\right)=a_{0} \prod_{i=1}^{n} l^{(i)}(\mathbf{X})$ has integer coefficients. Such a form is called a norm form.
The equation

$$
\begin{equation*}
a_{0} N_{K / \mathbb{Q}}\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)=b \tag{1}
\end{equation*}
$$

in $x_{1}, \ldots, x_{m} \in \mathbb{Z}$ is called a norm form equation.
If the \mathbb{Q} vector space spanned by $\alpha_{1}, \ldots, \alpha_{m}$ has a subspace, which is proportional to a full \mathbb{Z} module of an algebraic number field, different from \mathbb{Q} and the imaginary quadratic field, then $\alpha_{1} \mathbb{Z}+\cdots+\alpha_{m} \mathbb{Z}$ is called degenerate. Then it is easy to see, that (1) can have infinitely many solutions.
Buchmann and Pethő found twenty years ago, as a byproduct of a search for independent units that in the field $K:=\mathbb{Q}(\alpha)$ with $\alpha^{7}=3$, the integer $10+9 \alpha+8 \alpha^{2}+7 \alpha^{3}+6 \alpha^{4}+5 \alpha^{5}+4 \alpha^{6}$ is a unit. This means that the diophantine equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x_{0}+x_{1} \alpha+\cdots+x_{6} \alpha^{6}\right)=1 \tag{2}
\end{equation*}
$$

has a solution $\left(x_{0}, \ldots, x_{6}\right) \in \mathbb{Z}^{7}$ such that the coordinates form an arithmetic progression.
Our goals are: Generalize (2) in three directions, and investigate those solutions which form an arithmetic progression:

- we consider arbitrary number fields,
- the integer on the right hand side of equation (2) is not restricted to 1 ,
- it is allowed that the solutions form only nearly an arithmetic progression.

L

[^0]
[^0]: ${ }^{1}$ Universitaet Debrecen
 ${ }^{2}$ University of Debrecen, Hungary
 ${ }^{3}$ Graz University of Technology

