1

On norm form equations with solutions forming arithmetic progressions

ATTILA PETHÖ¹ <pethoe@inf.unideb.hu>

ATTILA BÉRCZES²
berczesa@math.klte.hu>

 $Volker \ Ziegler \texttt{@finanz.math.tugraz.at} > \\$

Let $\alpha_1 = 1, \alpha_2, \ldots, \alpha_m$ be linearly independent algebraic numbers over \mathbb{Q} and put $K := \mathbb{Q}(\alpha_1, \ldots, \alpha_m)$. Let $n := [K : \mathbb{Q}]$. For any $\alpha \in K$, denote by $\alpha^{(i)}$ the conjugates of α . Put $l^{(i)}(\mathbf{X}) = X_1 + \alpha_2^{(i)}X_2 + \cdots + \alpha_n^{(i)}X_n$ for $i = 1, \ldots, n$. There exists a non-zero $a_0 \in \mathbb{Z}$ such that the form $F(\mathbf{X}) := a_0 N_{K/\mathbb{Q}}(\alpha_1 X_1 + \cdots + \alpha_m X_m) = a_0 \prod_{i=1}^n l^{(i)}(\mathbf{X})$ has integer coefficients. Such a form is called a **norm form**.

The equation

$$a_0 N_{K/\mathbb{O}}(\alpha_1 x_1 + \dots + \alpha_m x_m) = b \tag{1}$$

in $x_1, \ldots, x_m \in \mathbb{Z}$ is called a **norm form equation**.

If the \mathbb{Q} vector space spanned by $\alpha_1, \ldots, \alpha_m$ has a subspace, which is proportional to a full \mathbb{Z} module of an algebraic number field, different from \mathbb{Q} and the imaginary quadratic field, then $\alpha_1\mathbb{Z} + \cdots + \alpha_m\mathbb{Z}$ is called degenerate. Then it is easy to see, that (1) can have infinitely many
solutions.

Buchmann and Pethő found twenty years ago, as a byproduct of a search for independent units that in the field $K := \mathbb{Q}(\alpha)$ with $\alpha^7 = 3$, the integer $10 + 9\alpha + 8\alpha^2 + 7\alpha^3 + 6\alpha^4 + 5\alpha^5 + 4\alpha^6$ is a unit. This means that the diophantine equation

$$N_{K/\mathbb{Q}}(x_0 + x_1\alpha + \dots + x_6\alpha^{\mathfrak{o}}) = 1$$

$$\tag{2}$$

has a solution $(x_0, \ldots, x_6) \in \mathbb{Z}^7$ such that the coordinates form an arithmetic progression.

Our goals are: Generalize (2) in three directions, and investigate those solutions which form an arithmetic progression:

- we consider arbitrary number fields,
- the integer on the right hand side of equation (2) is not restricted to 1,
- it is allowed that the solutions form only nearly an arithmetic progression.

L

¹Universitaet Debrecen

²University of Debrecen, Hungary

³Graz University of Technology