On almost geometric prime gernerating sequences

Johann WIESENBAUER ${ }^{1}<$ j.wiesenbauer@tuwien.ac.at $>$

In the research problem 1.75 of [1], sequences of the form $\left[q^{n}\right]$ for any real number $q>1$ are considered with respect to their prime genrating properties. In particular, it is mentioned there that for $q=1287 / 545$ the integer parts of the first 8 powers are $2,5,13,31,73,173,409,967$, each of which is prime, and it is asked for values of q with a longer chain of this sort. It turns out that for any q with $2<q<3$. i.e. if $p=2$ is the very first prime of the corresponding sequence, 8 is the maximal length of such a chain. Moreover, it seems to be the case that for every starting prime p there is a chain of maximal length (cf. my sequence A094106 at [2], where for the first 24 primes those maximal lengths are actually determined). In my talk a number of other interesting properties of these sequences are studied, though proofs can be given usually only on heuristic grounds.
[1] Crandall R., Pomerance C.: Prime Numbers - A Computational Perspective, Springer, 2000 [2] : Sloane's Online Encyclopedia of Integer Sequences, http:// www.research.att.com/ njas/sequences/

L

[^0]
[^0]: ${ }^{1}$ Inst. f. Diskrete Math. und Geometrie der TU Wien

